

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería

Programa de Estudios

I. IDENTIFICACIÓN

Carrera	Ingeniería Indust	rial	Semestre	Primero	
Materia	Álgebra		Código de la materia	401	
Prerrequisitos	CPA Créd		Créditos Académicos	8	
Horas Semanales	Teóricas	2	Horas Semestrales:	Teóricas	32
	Prácticas	3		Prácticas	48
	Laboratorio			Laboratorio	
	THI	10		HTAI	160
	Total - HS	15		Total -THA	240

II. FUNDAMENTACIÓN

El álgebra aporta al perfil del ingeniero, la capacidad de desarrollar un pensamiento lógico y algorítmico al resolver problemas

Esta asignatura es fundamental en la formación de alumnos de Ingeniería, ya que la misma posee, por un lado, un apreciable valor formativo destinado a "enseñar a pensar, fomentar el espíritu crítico y practicar el razonamiento lógico" (Santaló), y por otro lado un alto valor instrumental, ya que proporciona los elementos necesarios tales como la simbología, teoremas y métodos, que son imprescindibles en la resolución de situaciones problemáticas concretas.

Por lo expuesto, la asignatura se constituye en un componente importante para el desarrollo y la comprensión de las materias profesionales, y, además, con su aplicación se pretende inculcar en los educandos el espíritu de colaboración, el pensamiento crítico y reflexivo, la exactitud, el orden, la pulcritud y los valores fundamentales que se relacionan con el cumplimiento de las responsabilidades asumidas, el respeto a sí mismo y a los demás.

III. OBJETIVOS

GENERAL

- Desarrollar la capacidad de pensamiento lógico y ordenado.
- Aplicar los conceptos y propiedades del álgebra para resolver ejercicios y problemas con precisión.

Aprobado por: CD Fecha:	Actualización No.:	Sello y Firma	Página 1 de 4
----------------------------	--------------------	---------------	------------------

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería

Programa de Estudios

ESPECÍFICO

- Conocer los conceptos básicos y elementales necesarios para el desarrollo del álgebra.
- Manejar adecuadamente los procedimientos y las técnicas
- Aplicar los conceptos y propiedades del Álgebra para resolver ejercicios y problemas con precisión.
- Manejar adecuadamente los procedimientos y las técnicas

IV. CONTENIDOS PROGRAMÁTICOS

UNIDAD 1: FUNCIONES

- 1.1 Funciones algebraicas. Clasificación (implícita, explicita).
- 1.2 Valor absoluto.
- 1.3 Funciones logarítmicas y exponenciales
- 1.4 Propiedades de los logaritmos y de los exponentes
- 1.5 Logaritmo de un número. Definición. Propiedades.

UNIDAD 2: ECUACIONES Y SISTEMAS DE ECUACIONES

- 21. Ecuación. Identidad. Definiciones. Equivalencia. Definición. Teoremas
- 22. Ecuaciones polinómicas en una variable. Secuencia de Sturm
- 23. Ecuaciones binomias y trinomias. Ecuaciones simétricas
- 24. Ecuaciones irracionales y trigonométricas
- 25. Transformada de ecuaciones: forma mónica, forma y = k.x, forma y = x + h
- 26. Ecuaciones completas de 2do. Grado en dos variables. Aplicación geométrica
- 27. Ecuaciones: exponenciales y logarítmicas

UNIDAD 3: DESIGUALDADES

- 3.1. Definición. Dominio y Rango.
- 3.2. Sucesión. Definición. Dominio y Rango
- 3.3. Desigualdades, relaciones. Propiedades.
- 3.4. Desigualdades lineales. Valor absoluto en desigualdades.
- 3.5. Sistema de desigualdades lineales (representar en forma gráfica el conjunto solución).
- 3.6. Desigualdades cuadráticas. Sistemas de desigualdades cuadráticos. Aplicaciones en problemas.

Aprobado por: CD Fecha:	Actualización No.:	Sello y Firma	Página 2 de 4
	•••		

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería

Programa de Estudios

UNIDAD 4: POLINOMIOS

- 4.1. Polinomio general. Definición. Valor numérico
- 4.2. Polinomio idénticamente nulo. Definición. Condición necesaria y suficiente.
- 4.3. Polinomios idénticos. Definición. Condición necesaria y suficiente. Teorema
- 4.4. Teoremas de divisibilidad
- 4.5. Teorema de la raíz racional Aplicación
- 4.6. Algoritmo de Horner Factoreo por Evaluación
- 4.7. Teorema de Bezout
- 4.8. Métodos de los coeficientes a determinar (Descartes)

UNIDAD 5: NÚMEROS COMPLEJOS

- 5.1. Definición. Par ordenado
- 5.2. Forma binómica del complejo. Forma Geométrica.
- 5.3. Forma trigonométrica. Forma exponencial y Forma Polar.
- 5.4. Operaciones que pueden realizarse con cada una de las formas.
- 5.5. Potencia de un binomio de base compleja y exponente complejo

UNIDAD 6: OPERACIONES ALGEBRAICAS

- 6.1. Análisis Combinatorio Factorial de un número
 - > Permutaciones simples. Definición. Fórmula. Aplicación.
 - > Arreglos simples. Definición. Fórmula. Aplicaciones
 - Combinaciones simples. Definición. Fórmula. Propiedades. Aplicaciones. Teoremas.
- 6.2. Potencia de un binomio.
 - Binomio de Newton. Fórmula para n entero y positivo
- 6.3. Series
 - Progresión aritmética. Aplicaciones
 - Progresión armónica, definición
 - Progresión geométrica. Aplicaciones

V. ESTRATEGIAS DIDÁCTICAS

La metodología a ser utilizada será la exposición del profesor, demostración de teoremas, la resolución de ejercicios y problemas interactuando constantemente con el alumno a fin impartir clases dinámicas.

Las prácticas de aula permitirán que el alumno participe individualmente y/o en grupo, resolviendo problemas propuestos por el profesor y planteando preguntas sobre aquellas cuestiones que no le hayan quedado claras. Se trata fundamentalmente de que

Aprobado por: CD Fecha:	Actualización No.:	Sello y Firma	Página 3 de 4

Creada por Ley Nº:1.009/96 del 03/12/96 Facultad de Ingeniería

Programa de Estudios

las prácticas de aula sean participativas y permitan ver el grado de seguimiento de la asignatura por parte de los estudiantes.

Las clases de problemas tienen por objetivo el manejo en la práctica de los conceptos y leyes mostrados previamente en la teoría; aparte de ello, fomentan el aprendizaje de técnicas para su resolución, conduciendo al desarrollo de la capacidad de razonamiento

VI. ESTRATEGIAS DE EVALUACIÓN

Se tomarán exámenes parciales escritos: Cada parcial se basa fundamentalmente en la resolución de problemas que vinculación los distintos conceptos desarrollados. Se le da importancia al planteo adecuado del mismo y a la discusión de los resultados. El mismo criterio se emplea en los exámenes finales.

Para obtener la calificación se realizará conforme a lo establecido en el Reglamento Académico vigente de la FIUNI.

Para tener derecho a evaluación final en la asignatura el alumno deberá lograr un rendimiento mínimo de cincuenta por ciento en las evaluaciones parciales (en promedio).

Las evaluaciones parciales tendrán un peso del 40% y las finales un peso del 60%. Si el alumno no alcanza en el examen final un rendimiento de 60% como mínimo, será directamente reprobado.

VII. ACTIVIDADES DE EXTENSIÓN Y DE RESPONSABILIDAD SOCIAL UNIVERSITARIA ASOCIADAS A LA CARRERA.

No aplica.

VIII. BIBLIOGRAFÍA

BÁSICA

- Murray R. Espiegel. Álgebra Superior. McGRAW-HILL. Buenos Aires.
- Albert, A. *Álgebra Superior*. (2002). Buenos Aires Argentina. Editorial Noriega Editores.
- Kurosch, A. (2005) Curso de Álgebra Superior. Bs. As. Argentina. Editorial Limusa. ISBN: 9789681849382
- Secchia, (2001) Cantidades imaginarias. Madrid. España. Oca del Valle
- Farias Sinécio. Curso de álgebra

COMPLEMENTARIA

- Rojo, A. (2000) Algebra. Bs. As. Argentina. Tomo I Ed. El Ateneo.
- Rojo, A. (2000) Algebra. Bs. As. Argentina. Tomo II Ed. El Ateneo.
- Faddiee, vy Sominski (1999), Problemas de Algebra Superior. Editorial MI

Aprobado por: CD Fecha:	Actualización No.:	Sello y Firma	Página 4 de 4